702 research outputs found

    Advances in Self Organising Maps

    Full text link
    The Self-Organizing Map (SOM) with its related extensions is the most popular artificial neural algorithm for use in unsupervised learning, clustering, classification and data visualization. Over 5,000 publications have been reported in the open literature, and many commercial projects employ the SOM as a tool for solving hard real-world problems. Each two years, the "Workshop on Self-Organizing Maps" (WSOM) covers the new developments in the field. The WSOM series of conferences was initiated in 1997 by Prof. Teuvo Kohonen, and has been successfully organized in 1997 and 1999 by the Helsinki University of Technology, in 2001 by the University of Lincolnshire and Humberside, and in 2003 by the Kyushu Institute of Technology. The Universit\'{e} Paris I Panth\'{e}on Sorbonne (SAMOS-MATISSE research centre) organized WSOM 2005 in Paris on September 5-8, 2005.Comment: Special Issue of the Neural Networks Journal after WSOM 05 in Pari

    Forecasting the CATS benchmark with the Double Vector Quantization method

    Full text link
    The Double Vector Quantization method, a long-term forecasting method based on the SOM algorithm, has been used to predict the 100 missing values of the CATS competition data set. An analysis of the proposed time series is provided to estimate the dimension of the auto-regressive part of this nonlinear auto-regressive forecasting method. Based on this analysis experimental results using the Double Vector Quantization (DVQ) method are presented and discussed. As one of the features of the DVQ method is its ability to predict scalars as well as vectors of values, the number of iterative predictions needed to reach the prediction horizon is further observed. The method stability for the long term allows obtaining reliable values for a rather long-term forecasting horizon.Comment: Accepted for publication in Neurocomputing, Elsevie

    Fast Selection of Spectral Variables with B-Spline Compression

    Get PDF
    The large number of spectral variables in most data sets encountered in spectral chemometrics often renders the prediction of a dependent variable uneasy. The number of variables hopefully can be reduced, by using either projection techniques or selection methods; the latter allow for the interpretation of the selected variables. Since the optimal approach of testing all possible subsets of variables with the prediction model is intractable, an incremental selection approach using a nonparametric statistics is a good option, as it avoids the computationally intensive use of the model itself. It has two drawbacks however: the number of groups of variables to test is still huge, and colinearities can make the results unstable. To overcome these limitations, this paper presents a method to select groups of spectral variables. It consists in a forward-backward procedure applied to the coefficients of a B-Spline representation of the spectra. The criterion used in the forward-backward procedure is the mutual information, allowing to find nonlinear dependencies between variables, on the contrary of the generally used correlation. The spline representation is used to get interpretability of the results, as groups of consecutive spectral variables will be selected. The experiments conducted on NIR spectra from fescue grass and diesel fuels show that the method provides clearly identified groups of selected variables, making interpretation easy, while keeping a low computational load. The prediction performances obtained using the selected coefficients are higher than those obtained by the same method applied directly to the original variables and similar to those obtained using traditional models, although using significantly less spectral variables

    Analog VLSI implementation of kernel-based classifiers

    Get PDF
    Kernel-based classifiers are neural networks (radial basis functions) where the probability densities of each class of data are first estimated, to be used thereafter to approximate Bayes boundaries between classes. Such an algorithm however involves a large number of operations, and its parallelism makes it an ideal candidate for a dedicated VLSI implementation. The authors present in this paper the architecture for a dedicated processor for kernel-based classifiers, and the implementation of the original cells.Peer ReviewedPostprint (published version

    Machine Learning and Data Analysis in Astroinformatics

    Get PDF
    Astroinformatics is a new discipline at the cross-road of astronomy, advanced statistics and computer science. With next generation sky surveys, space missions and modern instrumentation astronomy will enter the Petascale regime raising the demand for advanced computer science techniques with hard- and software solutions for data management, analysis, efficient automation and knowledge discovery. This tutorial reviews important developments in astroinformatics over the past years and discusses some relevant research questions and concrete problems. The contribution ends with a short review of the special session papers in these proceedings, as well as perspectives and challenges for the near future

    On the use of self-organizing maps to accelerate vector quantization

    Full text link
    Self-organizing maps (SOM) are widely used for their topology preservation property: neighboring input vectors are quantified (or classified) either on the same location or on neighbor ones on a predefined grid. SOM are also widely used for their more classical vector quantization property. We show in this paper that using SOM instead of the more classical Simple Competitive Learning (SCL) algorithm drastically increases the speed of convergence of the vector quantization process. This fact is demonstrated through extensive simulations on artificial and real examples, with specific SOM (fixed and decreasing neighborhoods) and SCL algorithms.Comment: A la suite de la conference ESANN 199

    Probabilistic outlier detection in vibration spectra with small learning dataset

    No full text
    The issue of detecting abnormal vibrations from spectra is addressed in this article, when little is known both on the mechanical behavior of the system, and on the characteristic patterns of potential faults. With vibration measured from a bearing test rig and from an aircraft engine, we show that when only a small learning set is available, probabilistic approaches have several advantages, including modelling healthy vibrations, and thus ensuring fault detection. To do so, we compare two original algorithms: the first one relies on the statistics of the maximum of log-periodograms. The second one computes the probability density function (pdf) of the wavelet transform of log-periodograms, and a likelihood index when new periodograms are presented. A by-product of it is the ability to generate random log-periodograms according with respect to the learning dataset. Receiver Operator Characteristic (ROC) curves are built in several experimental settings, and show the superiority of one of our algorithms over state-of-the-art machine-learning-oriented fault detection methods; lastly we generate random samples of aircraft engine log-periodograms
    • …
    corecore